# Interfacial Behaviors of Azocalixarene Derivatives at the Air / Water Interface and Photochromism in the Langmuir-Blodgett Films

Xun GUO<sup>1</sup>, Li ZHANG<sup>2</sup>, Guo Yuan LU<sup>1</sup>\*, Mei Fang YIN<sup>2</sup>, Fang LIU<sup>1</sup>, Ming Hua LIU<sup>2</sup>

<sup>1</sup>Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093

<sup>2</sup>Laboratory of Colloid and Interface Science, Center for Molecular Science, Institute of Chemistry, the Chinese Academy of Science, Beijing 100101

Abstract: The interfacial behaviors of the non-typical amphiphilic compound *p*-methylphenylazocalix[4]arene 1 and *p*-chlorophenylazocalix[4]arene 2 at the air/water interface and photochromism in the Langmuir-Blodgett films were studied by surface pressure-area isotherm and UV-Vis spectra. The results indicate that they can form stable monolayers at the air / water interface although they have no hydrophobic alkyl chains, and their LB film underwent reversible *trans-cis* photoisomerization on UV and daylight illumination.

Keywords: Azocalixarene, photochromism, monolayer, LB film.

The azocalixarenes is a novel chromogenic compound and their spectra properties have been reported. A number of them have been applied as selective ionophores in extractive process<sup>1</sup> or as selective ligands in ion selective electrodes and optical sensors based on spectra changes<sup>2</sup>. Some amphiphilic azocalixarene derivatives with hydrophobic long alkyl chains were synthesized and their interfacial behaviors at the air / water interface have also been investigated<sup>3</sup>. However, the photochromism of the azocalixarene derivatives in LB film has not been reported. In present work, the compounds 5, 11, 17, 23-tetrakis-[(4-methylphenyl)azo]-25, 26, 27, 28-tetrahydroxy calix[4]arene 1 5, 11, 17, 23-tetrakis-[(4-chlorophenyl)azo]-25, 26, 27, 28-tetrahydroxy calix[4]arene 2 (Figure1) were prepared by the diazo-coupling of calix[4]arene and *p*-methyl or *p*-chloro phenyl diazonioms in non-aqueous solution, respectively. The compounds 1 and 2 were characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS, IR and elemental analysis<sup>4</sup>. We found that 1 and 2 can form stable monolayers at the air / water interface although they have not hydrophobic alkyl groups. And the experiments by UV absorption spectra observations showed that the LB film underwent reversible trans-cis photoisomerization on UV and daylight illumination.

When compounds 1 and 2 were spread from chloroform solution onto water surface respectively, stable monolayers can be formed. Figure 2 showed  $\pi$ -A isotherms of 1 and 2 monolayers on pure water. It is observed that both no compressed plateau and the

<sup>\*</sup> E-mail: lugyuan@nju.edu.cn

Xun GUO et al.

limiting molecular area are 0.30 and 0.35 nm<sup>2</sup>/molecule. And **1** and **2** monolayers have higher surface pressure (above 60 mN/m). According to the proposal of Coleman<sup>5</sup>, when the molecular area is under 0.65 nm<sup>2</sup>, calix[4]arene molecules may take an orientation parallel to the air-water interface. Obviously, azocalixarene derivative **1** and **2** orient parallel at the air-water interface. Why can form their stable monolayers? At wood has reported that the bipolar amphiphilic calixarene without hydrophobic alkyl chains can self-organized to form two-dimensional bilayers in aqueous solution due to arene  $\pi$ - $\pi$  stacking interaction<sup>6</sup>. The reason of azo calix[4]arenes **1** and **2** monolayers can also ascribed to arene  $\pi$ - $\pi$  stacking interaction.

The photoisomerization of azo compound can be easily detected by the UV-Vis absorption spectra because the *cis* and *trans* configuration change also caused the change of the absorption spectra<sup>7</sup>. **Figure 3** and **Figure 4** show UV-Vis absorption spectra of the LB films of azocalixarene derivatives 1 and 2, respectively. It is clearly seen that the absorptions remarkably decrease after illumination at 365 nm for 30 min. It implies that the *trans*-to-*cis* photoisomerization has been preceded. Then the absorptions obviously increase after the illumination with daylight for 30 min. It means that the *cis*-to-*trans* photoisomerization proceeded to some extent. These phenomena indicated

Figure 1 The structures of azocalixarene 1 and 2



**Figure 2**  $\pi$ -A isotherms of the monolayers of 1 and 2: (a) 1 on the surfaces of pure water (b) 2 on the surfaces of pure water



#### Interfacial Behaviors of Azocalixarene Derivatives at the Air / Water 1545 Interface

Figure 3 Change of absorption spectrum of LB films of 1(18-layer ) on quartz before (A) and after (B) illumination at UV 365 nm for 30 min and and illumination with daylight for 30 min (C).



Figure 4 Change of absorption spectrum of LB film of 2 (30-layer ) on quartz before (A) and after (B) illumination at UV 365 nm for 30 min and then after illumination with daylight for 30 min (C).



that the *trans*-to-*cis* and *cis*-to-*trans* photoisomerization of both **1** and **2** in the LB films is reversible on illumination at UV 365 nm and daylight.

In conclusion, the non-typical amphiphilic azocalixarene derivatives can form stable monolayers at the air / water interface although without long alkyl chain, and the LB films can undergo reversible *trans-cis* photoisomerization on illumination at 365 nm and daylight.

### Acknowledgment

This work was supported by the National Natural Science Foundation (Grant No. 20372032) and Jiangsu Province in China (Grant. No. BK2004085)

# Xun GUO et al.

### References

- (a) H. Deligöz, E. Erdem, Solvent Extraction and Ion Exchage, 1997, 15, 811.
   (b) E. Nomura, H. Taniguchi, S. Tamura, Chem. Lett., 1989, 1125.
- (c) H. Shimizu, K. Iwamoto, K. Fujimoto, S. Shinkai, *Chem. Lett.*, 1991, 2147.
  (a) Y. Kubo, N. Maruyama, N. Ohhara, N. Nakamura, S. Tokita, *J. Chem. Soc. Chem. Commun.*, 1995, 1727.
- (b) J. D. Lu, R. Chen, X. W. He, J. Electroanal. Chem., 2002, 528, 33.
- (a) A. K. Hassan, A.V. Nabok, A. K. Davis, C. J. M. Stirling, *Thin Solid Films*, **1998**, 327, 686;
   (b) J. C. Tyson, J. L. Moore, K. D. Hughes, D. M. Collard, *Langmuir*, **1997**, 13, 2068.
- 4. C-M. Jin, G. Y. Lu, Y. Liu, X. Z. You, Z. H. Wang, H. M. Wu, Chin. J. Chem., 2002, 20, 1080.
- 5. G. Merhi, M. Munoz, A. W. Coleman, G. Barrat, Supramol. Chem., 1995, 5, 173.
- 6. G. W. Orr, L. J. Barbour, J. L. Atwood, Sciences., 1999, 285, 1049.
- 7. P. Rochon, Chem. Rev., 2002, 102, 4139.

Received 20 January, 2005

# 1546